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The zero-Prandtl-number limit of the Oberbeck-Boussinesq equations is compared 
to small-Prandtl-number Rayleigh-Be'nard convection through numerical simu- 
lations. Both no-slip and free-slip boundary conditions, imposed at the top and 
bottom of a small-aspect-ratio, horizontally periodic box are considered. A rich 
variety of regimes is observed as the Rayleigh number is increased: supercritical 
oscillatory instabilities for various values of the aspect ratios, competition between 
two-dimensional rolls, squares and hexagonal patterns, competition between 
travelling and standing waves, transition to chaos, and scalings laws for the first 
Rayleigh-number decade. This multiplicity of regimes can be attributed to the close 
interaction between the stationary and oscillatory instabilities at zero Prandtl 
number. 

1. Introduction 
1 .l. Geophysics, turbulence, and nonlinear dynamics 

The study of thermal convection at very low Prandtl number has long been 
motivated by geophysical and astrophysical interests. The Earth's liquid-core 
convection is thought to be governed by a Prandtl number of order P - 0.1, owing 
to the metallic nature of its materials. The Prandtl number in the convection zone 
of the sun and stars is extremely small (P - lo+') owing to the effective conductivity 
governed by radiative processes. The large value of the conductivity prevents 
motions from distorting the mean temperature profile, and convection is not an 
efficient mode of heat transport, even for strong forcing. The solar granulation shows 
a non-stationary , irregular pattern of roughly polygonal cells. 

In the astrophysical context, an asymptotic form of the Oberbeck-Boussinesq 
equations in the zero-Prandtl-number limit have been derived by Spiegel(i962). The 
asymptotic expansion which leads to these equations is presented here in $2. 
Concerns about the compatibility of this limit with the Boussinesq approximation 
have been raised (S. Fauve 1985, personal communication). But even if the 
compressibility of the stellar fluids must be taken into account to describe accurately 
the convective zone of the sun, these zero-Prandtl-number equations provide a good 
model for turbulence studies (Spiegel 1962 ; Kraichnan & Spiegel 1962 ; Herring 
1987). These equations are indeed the NavierStokes equations with an intrinsic 
forcing at  large scales (analogous to the Kuramoto-Sivashinsky equations). 

Finally, the study of small-Prandtl-number convection can be justified for the 
insight it may shed into nonlinear dynamics. The investigation of instabilities in 
Rayleigh-Be'nard convection has contributed to a large amount of theoretical 
progress in nonlinear dynamics. A systematic study of the stability of stationary 
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convective patterns has been conducted for several years by Busse and his 
collaborators (Schliiter, Lortz & Busse 1965; Busse 1967, 1971, 1972; Busse & Clever 
1979,1981 ; Clever & Busse 1974,1978,1981,1987,1989, 1990; Busse & Bolton 1984; 
Bolton & Busse 1985; Bolton, Busse & Clever 1986; see also the reviews by Busse 
1978, 1981, 1989). When the Prandtl number becomes small, it is observed that the 
secondary instabilities approach the onset of convection at the critical Rayleigh 
number R = R,. This onset, for instance, becomes coincident with the oscillatory 
instability of the two-dimensional roll pattern as the Prandtl number tends to zero 
and for free-slip boundary conditions (Busse 1972). A brief review of this progress is 
made here, in $3, by focusing on the results which are pertinent for the present study. 

The merging or at least the confluence of these instabilities a t  zero Prandtl number 
is an appropriate situation for the application of the nonlinear dynamics theory 
based on symmetry considerations and asymptotic expansions, such as amplitude or 
phase equations (see, for instance, Newell, Passot & Soul 1990 for a recent review). 
These powerful analytical tools should be able to describe the likely numerous 
regimes concentrated near the onset of convection and solutions of the zero- and 
small-Prandtl-number equations. 

1.2. Experiments, theory and numerical simulations 

One successful aspect of the study of instabilities in Rayleigh-Be’nard convection is 
the good agreement of theory with experiments. Low-Prandtl-number fluids exhibit 
interesting convective patterns and well-controlled transitions to chaos (see 
Croquette 1989a, b for a review). However, very small Prandtl number cannot be 
achieved in the laboratory, and small-Prandtl-number fluids, like mercury with 
P = 0.025, do not allow good visualization of the convective patterns. 

This reinforces the role of numerical simulations as an experimental tool for the 
exploration of small-Prandtl-number convection. Direct numerical simulations have 
given good support for significant theoretical developments (Siggia & Zippelius 1981 ; 
Zippelius & Siggia 1982, 1983; Busse & Bolton 1984; Bolton & Busse 1985). Early 
simulations of chaotic regimes, bifurcated from the oscillatory instability have been 
performed by Lipps (1976) and McLaughlin & Orszag (1982). All simulations suggest 
that stable travelling waves bifurcate supercritically a t  R = R,, from the two- 
dimensional roll pattern. For the case of no-slip boundary conditions, Clever & Busse 
(1987, 1989, 1990) found that these travelling waves encounter a secondary 
bifurcation a t  R = R,,, which saturate on a quasi-periodic regime. The same 
phenomena have been observed for free-slip boundary conditions by Tveitereid, 
Palm & Skogvang (1986) and Meneguzzi et al. (1987). The subsequent transition to 
chaos is achieved through the appearance of a third frequency. 

Several numerical studies have investigated two-dimensional or axisymmetric 
convective rolls at very small Prandtl number and predicted the zero-Prandtl- 
number behaviour through an extrapolation (Jones, Moore & Weiss 1976 ; Proctor 
1977; Clever & Busse 1981; Busse & Clever 1981). These works, reinforced by 
experimental observations (Chiffaudel, Fauve & Perrin 1987), show that a viscous 
regime just above the onset of convection is followed by an inertial regime where the 
convective motion tends to  be a rigid rotation near the axis of the convective roll (the 
‘flywheel effect’). This flow pattern tends to  annihilate the advection term of the 
momentum equation leading to drastic intensification of the convection for very low 
Prandtl numbers. This challenging problem of inertial convection is addressed in 
Clever & Busse (1990) who also point out that  the two-dimensional solution for 
inertial convection is unstable with respect to three-dimensional instabilities. 
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One of the major limitations of these numerical studies a t  low Prandtl number is 
the large discrepancy between the viscous and diffusive timescales (P is their ratio). 
The asymptotic limit leading to the zero-Prandtl-number equations of $2 allows one 
to get rid of this stiffness problem. These equations have been simulated by Herring 
(1970) for free-slip boundary conditions. He reported blow-up behaviour for a large 
class of initial conditions, which can be understood by the fact that the nonlinear 
terms of these equations vanish identically for the two-dimensional-roll modes. For 
no-slip boundary conditions, Clever & Busse (1990) have compared the first 
instabilities of these zero-Prandtl-number equations to those of very low Prandtl 
numbers. They have shown that the limit of vanishing Prandtl number is approached 
smoothly in the range of Rayleigh numbers that includes a t  least two subsequent 
bifurcations beyond the onset of convection. These two studies are at the root of the 
present work. 

1.3. The present experiment 
Three numerical spectral codes with periodically horizontal boundary conditions are 
described in $4, and used in the present experiment. Two of them (SST and KER) 
allow no-slip boundary conditions at the top and bottom of the layer and use two 
different spectral methods. The third one (THU), written for this study, allows free- 
slip boundary conditions. All these codes have been adapted to handle cases of both 
finite or zero Prandtl number. 

Numerical experiments for no-slip boundary conditions are reported in $5.  It is 
shown that the two cases, P = 0 and 0.025, are very close to each other, a t  least 
for the first instabilities. To check a theoretical prediction by Fauve, Bolton & 
Brachet (1987), various values of the aspect ratios of the box, k, and k,, have been 
explored ; the oscillatory instability of the two-dimensional convective rolls is always 
supercritical, and leads to stable travelling waves. The next instability at R = R,,, 
does not follow the picture described by Clever & Busse (1987, 1989, 1990) and leads 
to stable standing waves instead of a quasi-periodic regime. But the choice k, = 3.117 
and k, = 2.2 in the present experiment may explain this discrepancy. The subsequent 
transition to chaos from this regime is briefly documented here, with focus on 
intermittent regimes involving both a convective roll and a polygonal pattern. 
Attention is paid to scaling laws of the Nusselt number and energies on the first 
decade of variation of the Rayleigh number. 

The case of free-slip boundary conditions in a square box of aspect ratio 
k, = k, = 7 t / 4 2  is investigated in $6 with the new code THU. For finite Prandtl 
number P = 0.2, the competition between travelling waves and standing waves leads 
to a bifurcation diagram similar to the case of no-slip boundary conditions and to a 
transition to  chaos consistent with Meneguzzi et al. (1987). Surprisingly, at P = 0, the 
system did not blow up, except when starting exactly with the two-dimensional-roll 
marginal mode. Square or hexagon patterns are selected instead of the two- 
dimensional convective rolls which go to infinity as P+O. By varying the Prandtl 
number continuously from 0 to 0.2, it  is shown that these patterns are the proper 
limits of some small-Prandtl-number, stable solutions. The multiplicity of solutions 
in this region of the control space prevents a complete investigation of the 
bifurcation diagram ; only the main regimes and patterns are presented here. 

As this work is the only one after Herring (1970) and Clever & Busse (1990) to 
investigate the zero-Prandtl-number equations, it cannot report a complete and 
exhaustive study of their solutions. In particular, it  does not explore large aspect 
ratios. Given a finite amount of computer time, only the principal regimes observed 
in numerous but finite numerical experiments are reported here. But their 
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multiplicity and variety suggest that  these zero-Prandtl-number equations are an 
interesting model for the study of instabilities. 

2. Zero-Prandtl-number equations 
2.1. The Boussinesq approximation 

A horizontal layer of fluid of thickness a! is heated from below by imposing the 
temperatures and T, a t  the bottom and upper horizontal conductive plates. When 
d is not too large, the fluid motion can be described by the Boussinesq approximation 
(Spiegel & Veronis 1960) leading to the Oberbeck-Boussinesq equation : 

Po 
v ,+v .Vv  = 

Po 

v - v  = 0, 

Tt 4- v -  V T  = K V ~ T ,  

where v = (u, v, w) is the velocity, T the temperature, p the density, p the pressure, 
e3 the vertical unit vector, g the acceleration due to  gravity, v the viscosity, and K the 
temperature conductivity. The equation of state is linear, p = po[l -a(T'-q)],  with 
a the thermal expansion coefficient and po and T, reference density and temperature. 

If one choses units a! for length, d 2 / v  for time (thus v /d  for velocity), v / K ( ~ - T ~ )  
for temperature, and a convenient unit for the pressure, the dimensionless 
Oberbeck-Bousinesq equations read 

where w is the vertical component of the velocity and 0 = T(x, y, z )  - Td(z) is the 
temperature deviation from the linear diffusive profile Td(z). The dimensionless 
control parameters are the Rayleigh number R = agd3(T, - T2)/m,  the Prandtl 
number P = v / K ,  and the two aspect ratios k, = 27cd/L, and k, = 2nd/L,, where L, 
and L, are the horizontal dimensions of the box. 

Periodicity of all fields is assumed in the horizontal direction. In the vertical 
direction, the temperature boundary conditions read 6 = 0 at z = 0 and z = 1. Two 
types of boundary conditions for the velocity are considered. For the no-slip 
boundary conditions v = 0 at z = 0 and z = 1, and for the free-slip boundary 
conditions a, u = a, v = 0 at z = 0 and z = 1.  

2.2. The zero-Prandtl-number limit 
Let us denote the dimensionless form of (2.2.) by the four dimensionless numbers 

which are in front of the terms r: g;), 
with the convention that the terms on the left-hand sides of these equations have 
coefficients equal to one. The units for the pressure are unimportant because the term 
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V p  is only a constraint to  maintain the incompressibility. If we keep the unit of 
length equal to  d but multiply the unit of velocity by an arbitrary factor W(R, P )  
(and thus divide the unit of time by the same factor) and the unit of temperature by 
an arbitrary O(R, P ) ,  the new dimensionless form of the Boussinesq equations now 
reads 

;:;::). 
For instance, the choices W = P-' and 0 = P-IR-I lead to the dimensionless form 

which is widely used in the literature. 
Examining asymptotic solutions of the Boussinesq equations in the limit 

P+O requires an assumption on the leading behaviour of the velocity 
u = W(P)  [do) + P d l )  + O(P2)]  and the temperature 8 = Q ( P )  [eco) + POc0) + O(P2) ] ,  
where the di) and 8($) are of order 1 and the functions W and 8 express the leading 
behaviour of the velocity (W = PY) and the temperature (8 = pd). Keeping a 
dimensionless form of the equations and examining all the dominant balances of 
terms in the equations (by exploring all the possible W and 8) is equivalent to  
changing the dimensionless form of the equations and assuming that the fields u and 
8, expressed in the new units, are of order 1 when P+O. 

For instance, if W = 0 = P-I, the dimensionless form 

equations read 

for P = 0, i.e. a three-dimensional (3D) Euler equation decoupled from a temperature 
equation forced by a vertical velocity term. The order-one solutions of these 3D 
Euler equations scale like P-l in the original dimensionless form of (2.2). These 
asymptotic equations describe solutions issued from initial conditions which are so 
strong that the viscosity and the buoyancy play no role, or from initial conditions 
which tend to blow up (e.g. because of the 'fly-wheel effect'). Another example is 
obtained by choosing W = P-' and 8 = P+, leading to the dimensionless form 

g :) 
and the asymptotic equations 

i.e. a heat equation decoupled from a 3D Euler equation forced by the buoyancy. But 
these asymptotics only describe a transient because there is no forcing in these 
asymptotic equations, and the temperature diffusion damps the temperature which 
will eventually stop scaling as P-'. A third non-trivial dominant balance is obtained 
for W = 1 and 8 = P, which leads to an (x, y) two-dimensional (2D) Navier-Stokes 
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equation with no forcing term, and the constraint w = 0. This asymptotic equation 
actually describes particular solutions of (2.2) issued from 2D initial conditions with 
small deviation from the conductive profile. 

The present work is concerned with the scaling W = 0 = 1, i.e. with order-one 
solutions of (2.2). For P = 0 these order-one solutions are described by the 
asymptotic equations 

(2.3) I v ,+v .Vv  = -Vp+V20+R19e3, 

v - v  = 0 ,  

0 = W + V % .  

The inversion I9 = V-2w with the boundary conditions 8 = 0, at z = 0 and z = 1, and 
the horizontal periodicity of the temperature is a well-posed problem. 

These asymptotic equations have been derived by Spiegel (1962), but in his 
formalism the first order in the temperature expansion is a null term, so that (2.3) 
seems to appear only at the second order. However the asymptotic derivation of (2.3) 
can be rephrased as has been done in this section. 

2.3. The Nusselt number 

Taking the horizontal average of the temperature equation in (2.1), i.e. the 
Oberbeck-Boussinesq equations with physical units, and examining stationary 
solutions lead to the z ordinary differential equation az(wT)ZY = Kaz(T)zy, where the 
horizontal average of 3D field f(x, y, z )  is defined by 

The integration constant 

H = -KC&(T)"~(Z) + (wT)"'(z) 

is the heat flux. By choosing z = 0 and z = d in this z-dependent expression, and using 
the boundary condition w = 0 ,  this constant can be viewed as minus the slope of the 
mean temperature profile near the plates times the diffusivity ; 

H = -K~z<T)xY(0) = -Ka,(T)5y(d).  

Another interesting expression of the heat flux is obtained by averaging its z- 
dependent expression in the vertical to get 

where the vertical averaging is defined by 

When there is no convection the heat flux is simply H ,  = K(  - T , ) / d .  The Nusselt 
number is by definition the ratio Nu = H / H o  of the actual flux Hover the conductive 
flux H,, i.e. 
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Switching to the dimensionless quantities x, y, z ,  v ,  and 8, the expression for the 
Nusselt number reads 

NU = 1 + P y w e ) x y z .  (2.4) 

The same expression could have been obtained directly from the dimensionless 
equations (2.2) by taking into account the fact that the dimensionless temperatures 
imposed on the plates are equal to TIP(  

Order-one solutions of the asymptotic equations (2.3) are characterized by a 
Nusselt number identically equal to one. Physically, this is because the mean profile 
of temperature in the layer is equal to the conductive profile. However, E,, = (wf3)x"z 
is an interesting quantity to measure for zero-Prandtl-number convection, as it is the 
coefficient of the leading order of Nu - 1 in the limit P + 0. 

For time-dependent regimes, these various expressions of the heat flux and the 
Nusselt number are identical to the case of stationary solutions, provided that a time 
average is performed. The definition of the Nusselt number reads 

- T,) and T,/P( Tl - Tz). 

ivu = 1 + p y w e ) = V z t ,  (2.5) 

and the mean value of E,,(t) is the interesting quantity to measure at zero Prandtl 
numbers. 

2.4. The poloidal-toroidal decompoeition 
The elimination of pressure in the Oberbeck-Bousinesq equations can be done using 
the poloidal-toroidal decomposition of the velocity field o = (u, w, w) : 

V ( 2 ,  y, 2) = V X [V X $(x, y, 2) e3I + V X @(X, Y, 2) e3 + u(z) 
= ( $ x z + @ y + ~ , $ y z - @ x + K  -v:9,, (2.6) 

where V: = az+a; is the horizontal Laplacian. This decomposition has often been 
used in studies of Rayleigh-BBnard convection. However, the introduction of the 
mean shear U(z) = [U, v] had sometimes been forgotten (e.g. Clever & Busse 1987), 
even for convective regimes where i t  was not negligible. Its importance has been 
realized recently by Clever & Busse (1989), who corrected their previous results 
accordingly. 

Projecting on the vertical direction e3 the curl and the (curl)2 of the momentum 
equation, the evolution equation for vertical vorticity [(x, y, z, t )  = - Vg @, the 
vertical velocity w(x, y, z ,  t )  = - V g  $, the temperature deviation O(x, y, z, t ) ,  and the 
two mean shear components U(z , t )  and V ( z , t )  read 

I [, +N1(V.VV) = vy, 
vzW, - N ~ ( V .  V U )  = RV; e + v4w, 

P(e, + tt - we) = w + vie, 
u, + az(uw)xy = u,,, 
v, +a,(ww)Z" = v,,, 

where Nl and N ,  are the nonlinear projections 

N l ( f )  = e 3 - V  xfand N 2 ( f )  = e3-V x (V xf), 

and ( f ) x Y ( ~ )  denotes the horizontal average of a field f(x, y, 2). 
The system (2.6), (2.7), with the horizontally periodic boundary conditions, and 

either no-slip boundary conditions or free-slip boundary conditions is well posed. 
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Knowledge of 5 and w defines 1c. and f up to an arbitrary field G(z), which is actually 
a gauge of the decomposition and plays no role in the value of v .  

3. Instabilities at small Prandtl numbers 

3.1. The importance of multiple instabilities 
A complete understanding of the transition to chaos, and to fully developed 
turbulence, for small and zero Prandtl numbers would consist in detailing all the 
bifurcations which occur in the control space of the parameters ( P ,  R, k,, ku), 
including the large-aspect-ratio limits k, -+ 0 and k, + 0, for both no-slip and free- 
slip boundary conditions. Such a task is, of course, beyond computer and human 
capabilities. Nevertheless, numerical experiments, such as the ones presented here, 
are useful to  discover the principal regimes that dominate these transitions to chaos 
and fully developed turbulence. A first step toward the understanding of these 
transitions can be started by a theoretical investigation of some observed simple 
bifurcations, such as the stationary or the oscillatory instabilities, or some non- 
generic multiple instabilities obtained for specific values of the control parameters. 
Indeed, most of the regimes observed in the transition have roots in such instabilities 
through stable or unstable bifurcated solutions. 

The theory of instabilities is now a t  an advanced stage where it is possible to  
perform numerous predictions using only the symmetries of the equations and of the 
bifurcating regimes. Symmetry considerations are useful to derive a priori the 
amplitude equations valid in the vicinities of instabilities (e.g. Golubitsky, Stewart 
& Schaeffer 1988). The addition of higher-order terms in these amplitude equations, 
and the study of some degenerate cases in the values of the nonlinear coefficients, 
often describe the secondary instabilities (see Crawford &, Knobloch 1991). 

I n  the following section, only selected results, pertinent to the interpretation of the 
present numerical experiments in low-aspect-ratio boxes, are reviewed. 

3.2. The onset of convection 

The stability of the conductive state can be solved analytically for horizontal 
periodic conditions (see Chandrasekhar 1961). The onset of convection is a stationary 
instability (also called the 'exchange of stability principle ') independent of the 
Prandtl number. The critical values are R, - 1707, k, - 3.117 for no-slip boundary 
conditions and R, = 27n4/4 - 657, k, = 1 ~ 1 4 2  N 2.22 for free-slip boundary con- 
ditions. At the onset of convection, each wave vector q whose modulus 141 is equal to 
k,, is associated with a marginal mode X = A@(z)expiqx+ (*), complex conjugated, 
where the velocity and temperature are the components of X, and the profile @(z)  
depends on the nature of the boundary conditions (free-slip or rigid). The nonlinear 
saturation of the amplitude of such a single 2D convection roll is governed, near the 
onset and at  the leading order in A ,  by the amplitude equation (Landau equation) 

A = ,uA+AIA1'Ar (3.1) 

where p is proportional to R-R,. 
Any pattern obtained with a linear combination of marginal modes 

N 

X = CAj@(z)expiq,x+(*),  
j-1 
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with 1q,1 = k,, is likely to be a bifurcated solution. The amplitude equation governing 
the nonlinear competition of these N marginal modes reads 

(3.3) 

If the wave vectors q, are regularly distributed on the circle of radius k,, square 
patterns are obtained for N = 2, hexagons for N = 3, and so on. 

The numerical values of the nonlinear coefficients of these amplitude equations 
have been documented in the literature (e.g. Schliiter et al. 1965; Malkus & Veronis 
1958 ; Cross 1980 ; Daniels & Ong 1990). It can be proven that 2D convection rolls are 
always selected in a supercritical manner, at least for finite Prandtl numbers. By 
adding the next-order nonlinear terms of the amplitude equations (3.1) or (3.2), and 
looking at degenerate cases for the values of their coefficients, the competition 
between various patterns (e.g. rolls, squares, and hexagons) and their secondary 
bifurcations can be classified (Golubitsky, Swift & Knobloch 1984; Crawford & 
Knobloch 1991). 

3.3. Secortdary instabilities and large-aspect-ratio limits 
Studying instabilities in the large-aspect-ratio limit k, + 0 and k, -+ 0 can be useful 
to explain secondary instabilities of convection patterns which are pertinent to the 
low-aspect-ratios cases. In  a horizontally infinite layer, discrete modes are replaced 
by continua of modes, and the amplitudes A,(t) of (3.1) or (3.2) must be replaced by 
A,(z, y ,  t )  which are the slowly varying envelope describing a wave packet of quasi- 
marginal modes. A good review of the amplitude-equation approach applied to 
convection can be found in the introduction of Newell et al. (1990). 

In the case of wave packets of 2D rolls, Newell & Whitehead (1969) and Segel 
(1969) have derived the partial derivative equations for the amplitude A ( z ,  y, t ) .  
Secondary instabilities pertinent for large aspect ratios (e.g. the Eckhaus and the 
skew-varicose instabilities) as well as for small aspect ratios (e.g. the zigzag 
instability) are contained in these equations. Subsequently, Siggia & Zippelius (1981) 
noticed that these amplitude equations were not complete because they ignored a 
marginal mode which is associated with a slowly varying vertical vorticity. The new 
set of amplitude equations, including the vorticity mode amplitude, predicts that, for 
small Prandtl numbers, 2D convective rolls are always unstable in an infinite layer 
(Zippelius & Siggia 1982, 1983). It also contains new secondary instabilities such as 
the oscillatory instability, pertinent for low aspect ratios. However, the work of 
Zippelius & Siggia did not capture the actual secondary instabilities of convection for 
free-slip boundary conditions, because it included some restrictive assumptions about 
the wavenumbers of the disturbances. This flaw is corrected by the analytical study 
of Busse & Bolton (1984) which is validated by the numerical simulations of Bolton 
& Busse (1985). To complete the hierarchy of amplitude equations, one should also 
include the coupling with the mean shears V(z),  which are not represented by the 
vertical vorticity component, to see whether new secondary instabilities could be 
obtained. 

Most of the secondary instabilities of convective patterns can be interpreted as 
phase instabilities. Such an interpretation can be found in Fauve et al. (1986) or 
Newell et al, (1990). The primary instability breaks some symmetries, e.g. the 
translational or Galilean invariances. Instead of one solution (the conductive state) 
invariant under these symmetries, the bifurcated stationary patterns describe orbits 
of solutions when these symmetries are applied. This implies that there exists a 



238 0. Thual 

marginal mode for the stability of these patterns, which can be at the root of a 
continuum of quasi-marginal modes, possibly unstable. The nonlinear dynamics of 
such instabilities can be described by phase equations. These phase equations can 
easily be obtained from the amplitude equations of the primary instabilities, if these 
contain the desired secondary instability, or directly from the original equations. As 
for amplitude equations, symmetry considerations can predict the form of the phase 
equations. 

3.4. The oscillatory instability 
The onset of the oscillatory instability of 2D rolls for low Prandtl numbers has been 
extensively documented in the literature (Busse 1972 ; Clever & Busse 1974, 1978, 
1981 ; Busse & Bolton 1984; Bolton & Busse 1985; Bolton et al. 1986). The saturation 
of this instability to a stable travelling-wave regime has been observed in many 
laboratory experiments (see Croquette 1989a, b )  and numerical simulations (e.g. 
Clever & Busse 1987, 1989, 1990; Meneguzzi et al. 1987), covering a wide variety of 
parameters. 

The form of the amplitude equations of the oscillatory instability of the 2D 
convective rolls in a small-aspect-ratio box can be derived with symmetry arguments 
(translations in the x-direction). Let Y = W ,  Y ( x ,  z )  exp ipy + W ,  Y*(x,  z )  exp ipy + (*) 
denote the marginal mode of this instability, where Y depends on the boundary 
conditions and p on the aspect ratios. The amplitude equations read 

(3.4) I ri: = (IC+iw) w,+(~,lW,l2+h2lyl2) w,, 
% = (IC-iw) y+(h,1412+~21W,12) &, 

where p is proportional to R-R,,, and w is the oscillatory frequency. 
A discussion on the values of the nonlinear coefficient allows one a classification to 

see whether travelling waves, with one of the two amplitudes vanishing, or the 
standing waves, with IW,l = IyI, are selected. The only attempts to calculate the 
actual values of these coefficients for free-slip boundary conditions and no-slip 
boundary conditions have been made by Fauve et al. (1987) with a phase-theory 
approach. For free-slip boundary conditions, the oscillatory instability is due to the 
interaction of the x-translational and x-Galilean invariances of the basic 2D pattern ; 
the phase equation can be derived exactly from the linear stability analysis. It 
predicts a supercritical bifurcation leading to stable travelling waves. For no-slip 
boundary conditions, such an exact calculation is no longer possible; Fauve et al. 
(1987) proposed a model by including a dissipation term in the phase equations to 
mimic the effect of the no-slip boundaries. This model predicts supercritical 
instabilities for aspect ratios k, around the critical value k, = 3.117, but also 
subcriticality for small Prandtl numbers and values of the aspect ratio k, smaller 
than a specified threshold. This prediction is investigated numerically in $5.  

As for the stationary instabilities, the instabilities of the periodic regimes 
bifurcated from an oscillatory instability can be classified a priori by adding more 
nonlinear terms in the amplitude equation (3.3) and looking a t  degenerate values of 
their coefficients (see Crawford & Knobloch 1991). The bifurcation diagrams for the 
competition between travelling waves and standing waves observed in $5 can be 
recognized as one case of this classification. 

3.5. The zero-Prandtl-number limit 
For free-slip boundary conditions in the limit P = 0, the nonlinear term coefficient A 
of the amplitude equation of the (3.1) 2D roll vanishes. Actually, all the nonlinear 
terms, at  every order, also vanish, as can be deduced from the asymptotic 
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Oberbeck-Boussinesq equations (2.3) ; the nonlinear term is indeed zero for the 2D 
marginal mode. This implies that there exists a trajectory of the unstable manifold 
of the conductive state, in the phase space of (2.3), which goes to infinity. Contrary 
to the case of finite Prandtl number or rigid boundary conditions, other patterns like 
squares or hexagons are likely to be selected a t  P = 0. Indeed, for the case of free- 
slip boundary conditions, the amplitude of the 2D roll pattern goes to infinity when 
P+ 0, while other patterns remain finite. This result does not contradict the analysis 
of Schliiter et al. (1965) which uses a dimensionless form of equations different from 
the one of (2.2). 

In the limit P +. 0 and k, + 0, the stationary and oscillatory instabilities occur 
simultaneously. It is beyond the scope of this work to write and to study the 
amplitude equation corresponding to this interaction between these two instabilities, 
but such an approach is likely to be strongly correlated to the numerical experiments 
reported here, and to  describe the competition between several patterns and regimes. 

4. Three numerical spectral codes 
4.1. The Jirst code for no-slip boundary conditions (SST) 

The first code (SST), used in the present experiments, was written by P. Sulem, C. 
Sulem, and 0. Thual and is described in Sulem et al. (1985). It has been run for the 
case of no-slip boundary conditions in a study of low-Prandtl-number convection 
(Meneguzzi et al. 1987). The so-called ‘Kleiser-Schuman method ’ is used to eliminate 
the pressure by imposing the artificial boundary condition V . v  = 0 at the top and- 
bottom. The resulting implicit linear equations coupling v and p are solved with the 
‘influence matrix method ’. The boundary conditions p = 1 on a single collocation 
point of the plates, with p = 0 on the others, are successively imposed for the 
homogeneous linear equation. The solution of the complete linear equation with 
p = 0 imposed on all the collocation points of the plates is then solved. All these 
solutions are then combined in order to satisfy V - v  = 0 on the plates. This last 
boundary condition forces the system to relax to an incompressible field, but for 
inadequate resolution and too-large time steps the incompressibility can be too 
strongly violated. 

The spatial scheme is pseudo-spectral, and the fields are expanded on Fourier 
series in the horizontal directions and Chebyshev polynomials in the vertical 
direction. The vertical boundary conditions are imposed through the ‘Tau method ’. 
The nonlinear terms are calculated on collocation points such that the mappings 
between the physical and spectral spare can be achieved through fast Fourier 
transforms. The temporal scheme is of second order, Adams-Bashforth for the 
nonlinear terms and the buoyancy terms and Crank-Nicolson for the other linear 
terms. The resolution of the Helmholtz and Laplace equations of this implicit scheme 
is done through the inversion of tridiagonal matrices, with a plain bottom line, after 
a suitable transformation. 

The adaptation of SST to the zero-Prandtl-number equations (2.3) has been an 
easy task. The implicit treatment of the temperature evolution equation is just 
replaced by an implicit diagnostic equation. Four fast Fourier transforms are saved 
in this case. 

On the Cray Y-MP, SST uses 0.051 s of CPU per time step, for the x: x y x z 
resolution 16’ x 32, and 0.38 s of CPU for the 32’ x 64 resolution. At zero Prandtl 
number a reduction of about 30% in these performances is achieved through the 
saving of fast Fourier transforms. 
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4.2. The second code for no-slip boundary conditions (KER) 
The second numerical code for no-slip boundary conditions (KER) used for the 
present experiments has been written and is maintained by R. M. Kerr (see Wu, Lilly 
& Kerr 1991). It is based on a pseudo-spectral method developed by Moser, Moin & 
Leonard (1983) in which the basis functions for the velocity satisfy both the 
incompressibility constraint, the periodicity in two directions (through a Fourier 
decomposition), and the no-slip boundary conditions in a third direction. 

The choice of the basis functions follows a poloidal-toroidal decomposition of the 
velocity-field analogue to (2.7), in which the unit vector e3, i.e. the direction of the 
projection, is replaced by one of the horizontal unit vectors, here the unit vector e2 
in the y-direction. The projection of the Navier-Stokes (or Oberbeck-Boussinesq) 
equations onto a set of ordinary differential equations is accomplished by using a 
weighted residual method. The weight vectors chosen are such that the pressure term 
is eliminated and they yield matrices which are banded with small bandwidths in the 
implementation of the implicit temporal schemes. Quasi-orthogonal functions built 
with Chebyshev polynomials are used in the vertical directions, allowing the use of 
fast Fourier transforms for the evaluation of the nonlinear terms in the physical 
space. 

In  KER, a third-order Runge-Kutta time differencing is used for nonlinear and 
buoyancy terms while the Crank-Nicholson semi-implicit scheme is used for the 
viscous terms. A particularly convenient feature is the possibility of an adjustable 
time step base on the CFL criterion (taken equal to 2.5 here). 

The adaptation of the KER code to the simulation of the P = 0 asymptotic 
equations (2.3) has been implemented by its author. The comparison between the 
results of KER and SST is a good test of the implementation of this feature in both 
codes. 

The figures of 0.16 s of CPU per time step on the Cray Y-MP for the resolution 
162 x 32 and 0.68 of CPU a t  the resolution 32' x 64 are obtained when running KER 
a t  finite Prandtl number. 

4.3. The code for free-slip boundary conditions (THU) 

For the purpose of this work, a pseudo-spectral code (THU) which allows free-slip 
boundary conditions has been written. These boundary conditions are obtained by 
imposing parity symmetries in the vertical direction to the various fields. For 
instance, the temperature deviation 8 is even, choosing z = 0 a t  the bottom plate. 
These symmetries allow the use of cosine and sine transforms in the vertical 
directions. In the horizontal directions a Fourier decomposition is used. 

Instead of eliminating the pressure by using the projection tensor P,(k) on the 
solenoidal fields, as in Meneguzzi et al. (1987), the poloidal-toroidal decomposition 
described in $2 is used for the THU code. The temporal scheme is a 'slaved-frog' 
scheme, as described in Frisch, She & Thual (1986), to allow large time steps. In this 
scheme, a set of equations, X ,  = LX+ F ,  where L is a linear operator and F contains 
the nonlinear terms, is discretized by 

(4.1) X(n+U = e 2 L 6 t ~ ( n - 1 )  + ~ - 1 ( ~ 2 L b t -  1)pW. 

When applied to (2.7), the linear operator L is chosen to  match the terms on the 
right-hand side. This operator is block diagonal in the spectral space, the coupling 
between w and 8 involving 2 x 2  matrices. The exponential of such matrices is 
calculated by the series xz-,, Ln/n! ,  where N is such that the next term in the series 
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Moore & 
R / R ,  Veronis (1966) Weiss (1973) THUl THU2 THU3 Nusselt 

- 1.18 1 . 1  1.16 1.18 1.185 
1.34 1.2 1.32 1.34 1.344 - 
1.61 1.4 1.68 1.61 1.606 - 
2.14 2 2.12 2.14 2.142 - 
2.68 3 2.65 2.68 2.678 - 

4 3.01 3.04 3.040 3.040 3.04 
3.55 6 3.52 3.55 3.553 3.553 

10 4.19 4.24 4.247 4.244 4.24 
15 4.78 4.85 4.867 4.853 4.853 4.85 
20 5.24 5.33 5.363 5.333 5.333 5.33 
30 5.97 6.08 6.173 6.105 6.105 6.10 
40 6.56 6.68 6.848 7.742 6.740 6.74 
50 7.05 7.16 7.441 7.298 7.295 7.29 
60 - 7.796 7.790 7.79 
70 - oscil. oscil. oscil. 

- 
- 

- 

- 

- 

- 

- 
- 

- - 

- - 

TABLE 1 .  Test of the code THU for 2D simulations for free-slip boundary conditions, P = 6.8 and 
k, = k,. The three resolutions 16a (THUl), 32a (THUZ), and 648 (THU3) are compared to the 
literature. 

must be smaller than a specified threshold. Numerical problems occur when this 
method is applied without care to matrices containing large numbers. For such 
matrices, exp (L/M) is first calculated with the series, where M is an  integer of the 
order of the norm of L, and the Mth power of the matrix obtained is computed to 
obtain the desired matrix expL. With this procedure, the terms of the series are 
always of order 1, and there is no longer a numerical problem. 

The advantage of this ‘slaved-frog’ temporal scheme is the ability to handle stiff 
problems, as is the case here for low-Prandtl-number convection where the diffusive 
and thermal times are very different. However, it must be noticed that for this 
scheme, the nonlinear terms F do not conserve energy. It seems, however, that  the 
artificial dissipation of the scheme is negligible for the regimes studied here. 

A first 2D test of this code has been performed by comparing i t  with various results 
in the literature (Veronis 1966; Moore & Weiss 1973). Table 1 lists the Nusselt 
numbers of 2D rolls of this comparison for the test value P = 6.8. A perfect 
agreement is obtained until the onset of the 2D oscillations. The experiments 
presented below, in $ 5 ,  provide a satisfactory test of this new code when compared 
to the results of Meneguzzi et al. (1987), obtained with a different code and using a 
different spectral method. 

With the resolution 163 the THU code takes 0.062s of CPU for finite Prandtl 
number and 0.039s of CPU for zero Prandtl number, per time step on the Cray 
Y-MP. 

5. No-slip boundary conditions 
5.1. Stable travelling waves and the oscillatory instability 

These numerical experiments start with an investigation of the prediction by Fauve 
et al. of subcritical oscillatory instability for small Prandtl numbers and values of the 
aspect ratio k, smaller than a specified threshold (e.g. k, < 2.9 for P = 0.025 and 
k, = 2.2). Both cases, P = 0 and P = 0.025, are considered, and the four values 
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P = 0.025 (filled symbols), and for k, = 3.177, 2.7, 2.5 and 2.3. The value of k, = 2.2 is fixed. 
FIQURE 1. Bifurcation diagram of the oscillatory instability for P = 0 (open symbols) and 

R 
1855 
1860 
1870 
1872 
1880 
1888 
1900 
1920 
1920 
2000 
2050 
2080 
2100 
2100 
2140 
2160 
2192 
2200 
2200 
2220 
2220 
2240 
2240 

E w ,  
39.4 
39.1 
39.4 
40.1 
39.7 
40.7 
40.3 
41.0 
41.7 
45.8 
49.3 
51.6 
53.4 
52.5 
57.3 
59.4-59.7 
63.1-63.2 
63.7-64.6 
62.543.0 

63.5-64.0 
68.4-69.6 

64.3-64.9 

66-73 

Ell 
0.17 
3.1 
8.2 
9.2 

13.5 
17.7 
24.3 
35.5 
34.8 
77 

106 
125 
140 
166 
168 
182-188 
208-2 12 
208-228 
267-278 
216-224 
270-292 
240-272 
25M20 

Regime Code 

TW SST 1 
TW SST 1 
TW SST 1 
TW KERl 
TW SST 1 
TW KERl 
TW SST 1 
TW SST 1 
TW KERl 
TW KERl 
TW KERl 
TW KERl 
TW KERl 
TW SST 1 
TW KERl 
MW KERl 
MW KERl 
MW KERl 
MW SST 1 
MW KERl 
MW SST 1 
unst ? MW KERl 
unst ? MW SSTl 

TABLE 2. Travelling waves (TW) for no-slip boundary conditions, P = 0, k, = 3.117 and k, = 2.2. 
The resolution 162 x 32 has been used for the two codes (SST1 and KER1). Modulated wave regimes 
are also listed. 

k, = 3.117, 2.7, 2.5 and 2.3 are explored, with k, = 2.2 fixed. Figure 1 shows the 
corresponding bifurcation diagram where Ey = is plotted as a function of R. 
In all cases the oscillatory instability is supercritical and leads to stable travelling 
waves. Numerical values of E,, = ( W O ) ~ Y ~  and E, are listed in table 2 (P = 0) and 
table 3 (P = 0.025) for the particular case k, = 3.117. Most of these bifurcation 
diagrams have been calculated with the SST code, but some comparisons with the 
KER code show good agreement. 

Other values of k, have been explored, leading to the same result. The most 
unstable wavenumber k, is known to be 2.2 for P = 0.025 and k, = 3.117 (Fauve 
et al. 1987). A numerical exploration shows that E ,  = 1.9 is close to the most unstable 
wavenumber for P = 0, k, = 2.7, as shown by the maximum of the travelling-wave 
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X 0 1 2 3 4 5 6  

Y 
FIQURE 2. Travelling wave regime for no-slip boundary conditions, P = 0, R = 1920, k, = 3.117 
and k, = 2.2. (a) Horizontal contours of 0 a t  zo = a. (b) Time evolution of a y-profile of 0 a t  xo = x / k ,  
and z,, = a. 

R E W O  E,  Regime Code 

1886 39.8 0.078 TW SSTl 
1888 40.1 0.77 TW SSTl 
1895 40.3 4.4 TW SSTl 
1900 40.5 5.0 TW SST 1 
1910 40.8 12.4 TW SST 1 
1920 41.0 17.8 TW SST 1 
1930 41.3 22.4 TW SST 1 
2000 43.0 61 TW KER2 
2000 44.0 65 TW SSTl 
2100 49.9 135 TW SSTl 
2200 58.1 224 TW SST 1 
2250 63.0 275 TW SST 1 
2260 63.9-64.0 285-287 MW SST 1 
2270 64.9-65.1 296-300.5 unst. MW SSTl 
4000 268-320 2340-3460 chaotic MW KER2 # 

TABLE 3. Travelling waves (TW) for no-slip boundary conditions, P = 0.025, k, = 3.117 and 
k, = 2.2. The resolutions 162 x 32 (SST1) and 322 x 64 (KER2) have been used. Modulated wave 
regimes (MW) are also listed. 

amplitude at  R = 1920 (which is a Rayleigh number close to the onset of the 
oscillatory instability). There is little chance of finding subcritical behaviour, even if 
one cannot rule it out completely. The theoretical approach for no-slip boundary 
conditions proposed by Fauve et aE. (1987) must be revisited by including, for 
instance, more nonlinear terms in their model. 

An example of these travelling waves for P = 0 shown in figure 2. The same 
features are observed for small but finite Prandtl numbers. A sinusoidal deformation 
of the roll in their axis direction y propagates at  a constant speed along the axis. This 
deformation is symmetric with respect to this reflection y + - y. The propagation 
speed is non-zero at the onset of the oscillatory instability. The mean shear V ( z )  has 
a sinusoidal form and is stationary while U(x) is zero. Its amplitude of V grows 
quadratically with the distance R-R,,, as can be seen from (2.2), and as observed by 
Clever & Busse (1989) for finite Prandtl numbers. 
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FIGURE 3. Bifurcation diagram of the travelling waves (TW) and standing waves (SW) competition, 
for no-slip boundary conditions, P = 0 (open symbols) and P = 0.025 (filled symbols), with 
k, = 3.1 17 and ky = 2.2. 

R 

1920 
1950 
2000 
2000 
2050 
2080 
2100 
2140 
2150 
2160 
2200 
2240 
2250 
2260 
2288 
2300 
2320 
2350 
2400 
2400 
2400 
2480 
2500 
2560 
2600 
3000 

E W O  

42-64 
44-50 
4G55 
47-55 
50-64 

missing 
5&74 
62-84.5 
62-85 
65-89 
68-96 
78-112 
79-1 14 
82-119 

missing 
89-13 1 
97-140 
99-149 

110-170 
110-170 
missing 
134-208 
lock218 
161-252 
169-267 
375-580 

EY 
68.8 

104 
170 
152 
252 
264 
342 
432 
450 
482 
570 
692 
700 
744 
816 
850 
928 

1040 
1200 
1200 
1216 
1528 
1620 
1888 
128-2040 
600-5100 

Regime 

unst. SW 
unst. SW 
unst. SW 
unst. SW 
unst. SW 
unst. SW 
unst. SW 
unst. SW 
sw 
sw 
sw 
sw 
sw 
sw 
sw 
sw 
SW 
8 W  
sw 
sw 
SW 
sw 
sw 
SW 
sw 
sw 

Code 

KERl 
KERl 
SST2 
KERl 
SST2 
KER 1 
SST2 
KERl 
SST2 
KERl 
SST2 
KERl 
SST2 
KERl 
KERl 
SST2 
KERl 
SST 1 
SST 1 
SST2 
KER 
KER 
SST2 
KER 
KER 
SST2 

TABLE 4. Standing waves (SW) for no-slip boundary conditions, P = 0, k, = 3.117 and k, = 2.2. 
The resolutions 162 x 32 (KER1) and 322 x 64 (SST2) have been used. 

The present values of R,, compare well with the values calculated by Clever & 
Busse (1974, 1989, 1990), using a stability analysis. The contribution of this section 
consists in a wider exploration of the aspect ratios k, and k, to rule out the prediction 
of Fauve et al. (1987). 

5.2. Competition between travelling waves and standing waves 
The study of the next instabilities, for the two cases P = 0 and P = 0.025, is now 
restricted to the aspect ratios k, = 3.117 and k, = 2.2. Figure 3 displays the 
experimental bifurcation diagram of the oscillatory instability, where the two 
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FIGURE 4. Standing wave regime for no-slip boundary conditions, P = 0, R = 2400, k, = 3.117 and 
k, = 2.2. (a)-(c) Horizontal contours of 0 at zo = + and different times. (d) Time evolution of a y- 
profile of 8 at xo = a/k ,  and zo = t. 

R Ewtl E ,  Regime 

1900 40.841.3 12 unst? SW 
2000 44.8-51.2 124 SW 
2100 52.8-65.6 250 SW 
2200 62.4-83.2 450 SW 
2300 76.8-106 650 S W  
2400 91.2-130 900 sw 
2500 109-157 1150 SW 
2600 126-186 1450 SW 
2700 146-216 1780 S W  

TABLE 5. Standing waves (SW) for no-slip boundary conditions, P = 0.025, kz = 3.117 and 
k, = 2.2. The resolution 32e x 64 (SST2) has been used. 

Prandtl-number cases have been superimposed. Table 4 ( P = O )  and table 5 
(P = 0.025) give the corresponding values of E,, and E,, and provide a satisfactory 
comparison between two resolutions and the two no-slip boundary-condition codes. 

When the Rayleigh number is increased, the stable travelling wave regime 
described in the previous section is destabilized at R = R,,, through a secondary 
oscillatory instability, i.e. a Hopf bifurcation of the Poincar6 mapping. With the 
appearance of a second frequency, incommensurable with the primary travelling 
wave frequency, the trajectories in the phase space lie on a torus. This regime is 



246 0. Thual 

called ' modulated waves ' in the classification of Crawford & Knobloch (1991) for the 
secondary bifurcations of an oscillatory instability with O(2) symmetry. Based on the 
present numerical experiments, it is hard to decide whether this bifurcation is 
supercritical or subcritical. Indeed, very long transients, eventually leading to a 
standing wave regime, are observed for values of R only slightly greater than R,,,. 
Other runs, a t  R very close to R,,,, could not be integrated long enough to decide 
whether their observed modulated wave behaviour was transient or not. If not, the 
interval [R,,,, Rsw] of stability of this regime is very small, and ends with a saddle- 
node bifurcation at R,,, which leads to a stable standing wave regime. 

These results cannot be compared directly with Clever & Busse (1987, 1989, 1990) 
who investigated different values of the aspect ratios k, and k,. In  both cases they 
observe a stable modulated wave regime on a large interval of the Rayleigh number 
past the bifurcation values R,,,. Their results compare well with the numerical 
experiments of Lipps (1976) and McLaughlin & Orszag (1982). But it should be 
checked whether these modulated wave regimes are very long transients, or part of 
some intermittent regimes with very long laminarization periods. This hypothesis 
would be consistent with the long run performed in the present experiment (but not 
shown here) for P = 0.025 and R = 4000 ; after staying on an intermittent regime for 
a very long time, the system seems to  relax to a modulated wave regime which is, in 
fact, weakly chaotic. 

Standing waves are stable up to high values of the Rayleigh number. For this 
regime the maximum of E, has been displayed in figure 3. Figure 4 shows a standing 
wave regime. A null mean shear V(x) characterizes these states, in accordance with 
their symmetries. These stable standing waves are competing with the stable 
travelling waves, i.e. they are stable on a common interval of the control parameter, 
starting a t  a Rayleigh number RMw. (This value has to be greater than R,, as 
predicted by instability theory.) The numerical determination of R,, is difficult 
because i t  has a long transient. Metastable standing wave regimes are indeed 
observed between R,, and RMw. For R close to  R,,, these transients are much longer, 
as would be predicted by linear arguments. When starting with random conditions 
of 2D rolls perturbed by a spatial white noise, standing wave regimes seem to be 
selected a t  first. This suggests the following picture: a stable manifold drags many 
initial conditions to  the vicinity of the unstable standing wave regimes, while a weak 
and slow unstable manifold eventually connects the trajectories to  the stable 
travelling wave regime. 

5.3. Intermittence and pattern competition 
When the Rayleigh number is further increased, the standing waves become 
unstable, and a scenario of transition to chaos takes place. This scenario is not 
investigated in detail here, and i t  cannot be decided whether the avenue to  chaos is 
a period-doubling transition to a strange attractor, the appearance of two other 
frequencies, some kind of intermittence, or another picture. 

After this transition, an intermittent regime eventually occurs. The time series of 
this regime, for E,, and E,, are displayed in figure 5 for P = 0 and R = 4000. This 
figure also provides a qualitative comparison between the SST code and the KER 
code; different initial conditions have been used for the two simulations, and after 
the transients, not shown of the figure, the regimes obtained with the two codes are 
qualitatively identical. 

The nature of this intermittent regime can be understood from the contour plots 
of figure 6. During the quiescent periods, the flow is in a 2D roll pattern. A small and 
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FIGURE 5. Time series and phase portrait of the intermittent regime for no-slip boundary 
conditions, P = 0, R = 8000, k, = 3.117 and k, = 2.2 and a qualitative comparison between the 
codes SST (left-hand panels) and KER (right-hand panels) at  the resolution 32* x 64. The initial 
conditions for the two codes are not the same, and the transients are not shown here. (a), (b) Time 
evolutions of Ewe. (c), (d) Time evolutions of E,. (e), (f) Phase portraits E,, versus E,. 

growing oscillation, with a standing wave pattern, eventually reaches very high 
amplitude. The convection rolls are bent to the degree that they break into cellular 
patterns with a polygonal shape. The intensity of the convection in these cells then 
decreases to a level where 2D rolls are observed again. This behaviour suggests the 
presence of a homoclinic orbit for the 2D rolls' stationary state. The unstable 
manifold is associated with the oscillatory instability, and the stable manifold is a 
result of the competition between the 2D rolls and other possible polygonal patterns, 
such as hexagons or squares. 
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(b) 

x 0 0.025 0.050 0.075 0.1 

FIQURE 6. Pattern competition in the intermittent regime for no-slip boundary conditions, P = 0, 
R = 8000, k ,  = 3.117 and k ,  = 2.2. (a)-(c) Horizontal contours of 0 a t  zn = t a t  t = 0.0125,0.05 and 
0.875 respectively. (d )  Time evolution of E,  for te[O, 0.11. 

( a )  R 

4 000 
8OOo 

16000 
32 000 
64 000 

128000 
256 000 

( b )  
4 000 
8 000 

16 000 
32 000 
64 000 

128000 

log,, E,, 
3.18 
3.74 
4.30 
4.87 
5.44 
6.03 
6.89 

2.49 
2.78 
2.91 
3.16 
3.34 
3.50 

login E,  
3.92 
4.72 
5.37 
5.98 
6.61 
7.25 
8.19 

3.48 
4.12 
4.70 
5.10 
5.43 
5.78 

login Em 
4.93 
5.55 
6.33 
6.74 
7.34 
7.95 
8.84 

4.33 
4.78 
5.04 
5.44 
5.77 
6.11 

TABLE 6. Chaotic regimes for no-slip boundary conditions, k, = 3.117, k, = 2.2 and (a) P = 0, 
(b) P = 0.025. The resolution 322 x 64 and the code KER has been used (KER2). 
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FIGURE 7. Scaling laws of (a) E,, (B) E,, and (c) E,,, for no-slip boundary conditions, P = 0. 
(open symbols) and P = 0.025 (filled symbols). 

5.4. Scaling laws of the Jirst Rayleigh-number decade 

Very long integrations for both P = 0 and P = 0.025 have been performed in order 
to investigate the first Rayleigh-number decade scaling laws of the time average 
(Ews)' = (E,) = ( v ' ) ~ ~ ~ ~ ,  and (Etot) = (v2)xuzt .  The values of these 
quantities, calculated for six Rayleigh numbers in geometric progression from 
R = 4000 to 128,000, are listed in table 6 ( a )  (P  = 0) and table 6 ( b )  (P = 0.025), and 
displayed in figure 7. They are fitted by the scalings laws 

. 

(5.1) 

(Ews)t  = 4.41 x 10-3(R-Rc)'.647, 

( E J ~  = 5.12 x 1 0 - 3 ( ~ - - ~ ~ ~ ) 1 . * 7 o  

(Etot)t = 116 x w 3 ( R  
for P = 0, with R,, = 1855, and 

for P = 0.025, with R I ,  = 1885. 
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R Eta0 Er Regime 

720 3.380 1.9 TW 
740 3.379 3.18 TW 
760 3.390 4.9 TW 
780 3.410 6.74 TW 
790 3.413 7.8 TW 
800 3.441 8.55 TW 
810 3.461 9.41 TW 
820 3.483 10.385-10.388 MW 

TABLE 7. Travelling waves (TW) for free-slip boundary conditions, P = 0.02 and k, = k, = k,. 
The resolution 163 (THUI) has been used. 

R E W O  E: Regime 

710 4.634.66 0.06488 unst. SW 
720 4.614.70 0.2-2.55 unst. SW 
740 3.32-3.55 0.4-5.8 unst. SW 
760 3.30-3.65 0.&9 unst. SW 
790 3.30-3.82 1-14 unst. SW 
800 3.424.00 2.1-16.5 unst. SW 
820 3.874.47 7-22 MW 
830 4.0M.75 9.3-25 MW 
840 3.50-5.87 7-32 BW 
850 3.20-6.75 7-87 BW 
860 3.G7.5 5-43 BW 
870 3.0-8.0 5 4 8  BW 
880 3.0-8.5 5-53 BW 
900 3.0-9.7 5-62 BW 
920 3.0-10.0 4-76 cw 
950 3.5-10.5 5-105 CW 

1000 3.5-12.5 5-760 IW 
1000 6.37 128 SQ 
1020 6.52 135 SQ 

TABLE 8. Regime for free-slip boundary conditions, P = 0.2 and k, = k, = k, : modulated waves 
(TW), biperiodic waves (BP), intermittent waves (IW), and chaotic waves (CW). The resolution lea 
(THU1) has been used. 

The slope of for P = 0.025 is the same as the slope that would be obtained 
for the Nusselt number, and it is higher than the experimental, numerical, or 
theoretical values (see Busse 1981) found in the literature for high Rayleigh numbers. 
But it must be remembered that only the first decade and a half of the Rayleigh 
number is investigated here. For these low values of R, only the comparison between 
finite and zero Prandtl numbers is of any interest. All the slopes are much higher at 
zero Prandtl numbers, which suggests that the scaling at  small Prandtl numbers 
differs from the order-one Prandtl convection. This is probably because thermal 
boundary layers completely disappear a t  zero Prandtl number. 
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FIGURE 8. Bifurcation diagram for free-slip boundary conditions, P = 0.2 and k, = k, = k,. 
Regimes : travelling waves (TW), standing waves (SW), modulated waves (MW), biperiodic waves 
(BP), chaotic waves (CW), intermittent waves (IW), and stationary squares (SQ). 

R E W O  

700 2-30 
800 7.5 
880 missing 
900 8 

1000 29 
lo00 29.3 
1020 32 
1020 44-56 
1040 35 
1040 42-66 
1060 35-70 
1100 50-5 1 
1100 35-100 
1200 40-100 
1200 60-180 
1300 30-130 
1300 40-100 
1500 40-105 
1600 60-220 
1700 110-155 

EI 
0-900 

110 
144.4 
150 
450-505 

490-558 
450-1 350 
530-6 10 
4 0 6  1500 
300-1700 
720-980 
40&2200 
6OCkl800 

60&2300 
50@4500 
800-2300 

1 ~ 0 0 0  
160O-4400 

457-5 1 1 

1 000-4500 

Regime 

SQOR 
SQ 
SQ 
SQ 
'HXOS 
HXOS 
HXOS 
SQCH 
HXOS 
SQCH 
SQCH 
HXOS 
SQCH 
HXCH 
SQCH 
HXCH 
SQCH 
HXCH 
HXCH 
HXCH 

Code 

THUZ 
THUZ 
THUl 
THUZ 
THU2 
THUl 
THU2 
THUl 
THU2 
THU 1 
THUl 
THU2 
THUl 
THUS 
THUl 
THUZ 
THUl 
THUZ 
THU2 
THU2 

TABLE 9. Regimes for free-slip boundary conditions, P = 0 and k, = k, = k,: stationary squares 
(SQ), intermittent oscillations of squares (SQOR), oscillations of hexagons (SQOS), and chaotic 
regimes (SQCH and HXCH). The resolutions 16s (THU1) and 32a (THU2) have been used. 

6. Free-slip boundary conditions 
6.1. Transition to c h o s  for a finite Prandtl number (P = 0.2) 

The first numerical experiments for free-slip boundary conditions, using the code 
THU, reproduce and complete the experiments performed for P = 0.2 and 
k, = kv = k, = ~ / 1 / 2  in Meneguzzi et al. (1987), with a different code, as described in 
$4. Numerical values of E,, = (w@zgz and Ek = ((v- V)2)xyz  are listed in table 7 and 
table 8. The corresponding bifurcation diagram showing Eg as a function of R is 
shown in figure 8. These values are in agreement with Meneguzzi et al. (1987) and 
complete the understanding of the transition to chaos. 

The competition between travelling waves and standing waves near the onset of 
the oscillatory instability leads to a bifurcation diagram similar to the one observed 
with no-slip boundary conditions. Travelling waves bifurcated supercritically at  

9 FLM 240 



252 
140 l ~ l ~ 1 ~ 1 ~ 1 ~ 1  - - 

E,,., 100 120 - - - 1 

/: - 
60 - 
40 - 

- - - 
- 

-sQoR SQ HXOS - 
20: 0 
0 I t - V I I I I I I I l  

- - 

0. Thual 

Y 

X 

EUH 

0 10 20 30 40 

FIGURE 10. Relaxation oscillation regime (SQOR) with basic square pattern for free-slip 
boundary conditions, P = 0, R = 700 and k, = k, = k,. (a) Horizontal contours of 0 at zo = a during 
the quiescent periods. (b),  (c) The same contours during the next burst. (d )  Time evolution of Ewe. 

R = R,,. At R = R,,, the appearance of a new frequency leads to a modulated wave 
regime. This transition is likely to be subcritical or closely followed by a saddle-node 
bifurcation, as indicated by the long transients observed near RIII. These transients 
of modulated waves, which can be interpreted as a main travelling wave mixed with 
a small-amplitude, counterpropagating wave, eventually jump abruptly to another 
type of modulated wave made of two counterpropagating waves of equivalent but 
not exactly equal amplitudes. This upper branch of modulated waves computes with 
the travelling wave regime down to a value R = R,,, which is hard to determine 
numerically. Unstable standing waves are also observed between R,, and R,, 
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FIQURE 11.  Chaotic regime with square basic pattern (SQCH) for free-slip boundary conditions, 
P = 0, II = 1100 and k, = kg = k,. (a), ( b )  Time evolution of E,B, and E;. (c), ( d )  Horizontal contours 
of 0 at z,, = $ at different times. 

through long transients, as for the case of no-slip boundary conditions. The detailed 
bifurcation diagram which explains this behaviour is not investigated here. But such 
complicated connections between travelling waves, standing waves and modulated 
waves are not surprising, as can be seen from the classifications of Golubitsky et al. 
(1988). 

The upper-branch modulated waves encounter a transition to chaos when the 
Rayleigh number is further increased. This transition is probably achieved through 
a period-doubling cascade, as suggested by the observation of biperiod regimes and 
eventually chaotic regimes followed by intermittent regimes. The precise nature of 
this scenario is not investigated here. Further information about this transition to 
chaos can be found in Busse & Sieber (1991). 

In  competition with these chaotic regimes, a stationary square pattern has been 
observed at around R = 1000. The continuation of this branch down to the onset of 
convection, and up to a transition to chaos, is not undertaken in the present 
experiments. Multiple and complex regimes are expected from such a study, which 
would require extended computer resources. However, this stationary regime can be 
connected to the zero-Prandtl-number case, as shown in $6.3. 

6.2. Regimes for zero Prandtl number 
The next experiments, performed with the code THU, are the first exploration of the 
case P = 0, for the same values k ,  = k ,  = k ,  as above. Numerical values associated 
with these experiments are listed in table 9 and represented in the partial bifurcation 
diagram of figure 9. More regimes should be observed by a complete exploration, but 

9-2 
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FIGURE 12. Chaotic regime with hexagonal basic pattern (HXCH) for free-slip boundary 
conditions, P = 0, R = 1200 and k, = k ,  = k,. (a ) ,  ( b )  Time evolution of E,, and Ek. (c), ( d )  
Horizontal contours of 0 at zo = f at different times. 

the purpose of this Section is only to illustrate the variety of these regimes for a few 
examples. 

Starting with initial conditions exactly equal to a linearly unstable 2D mode would 
lead the system to infinity, as explained in $3.  A small random perturbation is added 
to such an initial condition to  see if a system would eventually reach a bounded 
attractor. Numerical simulations performed by Herring (1970) suggested that even 
a random perturbation of this initial condition would lead to  blow-up behaviour. 

An investigation of this prediction is performed here for R = 700, with a white 
noise perturbation of a 2D roll as initial condition. Contrary to what was expected, 
the system eventually reaches a bounded attractor. The initial exponential growth 
of the initiated 2D roll is indeed interrupted by the competition with the orthogonal 
2D mode, seeded by the random perturbation. The asymptotic regime attained in 
this experiment consists in relaxation oscillations with a square pattern, whose 
characteristics are displayed in figure 10. During a long period of time the two 
orthogonal modes have the same amplitude, and a perfectly square pattern is 
observed. But this long stationary period is followed by a burst of one of the modes 
and relaxation to the quasi-equilibrium state. The same burst occurs for the other 
mode, after waiting an equal amount of quasi-stationary time ; this alternance 
repeats itself periodically. In other words, there exists a periodic orbit which spends 
a long time near a stationary square pattern. 

For higher Rayleigh number, stable stationary squares are observed. The 
connection between these square regimes and those of relaxation oscillations with a 
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0 0.05 0.10 0.15 0.20 
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FIQURE 13. Variation of'€ [0, 0.21 for free-slip boundary conditions, R = 1000 and kz = k, = k,. 
Regimes : stationary squares (SQ) and oscillating hexagons (HXOS). 

P E W O  EI Regime 

0 29.8 457-510 HXOS 
0.025 24.9 384-434 HXOS 
0.050 21.0 331-372 HXOS 
0.075 16.7 272-303 HXOS 
0.090 12.7 22&240 HXOS 
0.090 8.79 183 SQ 
0.100 8.57 178 SQ 
0.125 7.96 165 SQ 
0.150 7.42 152 SQ 
0.175 6.86 139 SQ 
0.200 6.37 128 SQ 

TABLE 10. Variation of P ~ [ 0 , 0 . 2 ]  for R = 1000 and k, = k, = k,: stationary squares (SQ) and 
oscillating hexagons (HXOS). The resolution 16s (THUl) has been used. 

square pattern, likely to be described by a global bifurcation approach, is not 
investigated here. For higher Rayleigh number two kinds of patterns are observed. 
oscillating and chaotic regimes with a square basic pattern (figure 11) are observed 
in competition with oscillating and chaotic regimes with a quasi-hexagonal basic 
pattern (figure 12) 

In order to make a connection between finite- and zero-Prandtl-numbers regimes, the 
stationary square regime, obtained for P = 0.2 and R = 1000, has been used as a 
starting point for a numerical experiment where the Prandtl number is decreased 
continuously from P = 0.2 to P = 0. The numerical values corresponding to this 
experiment are listed in table 10, and the corresponding bifurcation diagram is 
displayed in figure 13. The stationary square pattern, stable at P = 0.2, seems to 
undergo a subcritical bifurcation around P = 0.08; but the accurate establishment of 
this statement is not important here. Past this instability the system jumps to 
hexagonal oscillations which are continuously connected to the identical regimes 
observed at P = 0. This experiment shows that even for free-slip boundary 
conditions, the zero-Prandtl-number equations are a proper limit for small-Prandtl- 
numbers regimes. 

6.3. From small to zero Prandtl numbers 
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7. Conclusion 
The zero-Prandtl-number, Oberbeck-Boussinesq equations have been numerically 

simulated for both no-slip boundary conditions and free-slip boundary conditions in 
a small-aspect-ratio geometry. The derivation of these equations assumes an 
asymptotic behaviour of the solutions which is consistent with the numerical 
experiments performed a t  low Prandtl number. 

For no-slip boundary conditions, the bifurcation diagrams of the first instabilities 
for P = 0 and P = 0.025 are very close. The oscillatory instability is supercritical for 
a large class of aspect ratios, and leads to stable travelling waves. The observed 
secondary instabilities, resulting from the competition with the standing waves is 
consistent with amplitude-equation predictions, based on degeneracy studies. 
Instead of documenting the precise scenario of the transition to chaos encountered 
by these standing waves, the focus has been on the competition between patterns. An 
intermittent regime, involving standing waves and a polygonal pattern, is observed 
a t  high Rayleigh numbers. Scaling laws for E,, Etot and E,,, in the first decade of 
variation of R above the oscillatory instability, show an important, but finite, 
increase in the slope at  zero Prandtl number. These experiments have been 
performed with two different codes (SST and KER) in perfect agreement. 

For free-slip boundary conditions, the bifurcation diagram obtained for P = 0.2 is 
very similar to the case of no-slip boundary conditions. The competition between 
travelling waves and standing wavcs cventually leads to modulated waves, which 
encounter a transition to chaos. However, this bifurcation diagram is not appropriate 
in the limit P + 0 ,  because the stationary 2D roll patterns are pushed to infinity. 
Instead, other patterns such as squares or hcxagons are selected, and they undergo 
various instabilities, e.g. the oscillatory instability, and eventually a transition to 
turbulence. Thcsc zero-Prandtl-number patterns are continuously connected to 
finite-Prandtl-number regimes. 

These numcrical simulations open a new field of applications for instability studies 
and are characterized by the fact that the stationary and oscillatory instabilities are 
interacting closely, and even exactly a t  P = 0 ,  for free-slip boundary conditions. A 
detailed study of the amplitude equations that could be written a t  this interaction 
point would be needed before any further blind exploration of the control space 
should be made with a costly spectral code. This is why only partial bifurcation 
diagrams have been displayed in the present work. Stability analysis of the square 
or hexagonal patterns also needs to be made. 

Finally these investigations of zero- and very small-Prandtl-number convection 
could give a qualitative explanation of solar granulation. The observation of 
polygonal patterns in the connective zone of the sun is consistent with the present 
numerical experiments, regardless of the huge difference in the Rayleigh number 
(R - 10" for the sun). The intermittent behaviour of these structures could be 
explained by the competition between multiple metastable patterns. 
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of this work. I thank Robert Kerr for helping me with use of his KER code arid Hope 
Hamilton for a careful reading of the manuscript. This work was supported by the 
National Science Foundation through its contract with the National Center for 
Atmospheric Research (NCAR). The computations were performed on NCAR's 
CRAY Y-MP, with allocations provided by the Advanced Study Program and the 
Geophysical Turbulence Program of NCAR. 
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